For Academic Use Only

For Academic Use Only

  Lab 5 – SDK Lab

Targeting MicroBlaze™ on the Spartan-3E™

Starter Kit This material exempt per Department of Commerce license exception TSU

Lab 5: SDK Lab Introduction

  This lab guides you through the process of adding timer and interrupt controller to an embedded system and writing a software application that utilizes these timer and interrupt controller. The SDK will be used to create and debug the software application.

Objectives

  After completing this lab, you will be able to: Utilize the XPS timer with interrupt controller

  • Assign an interrupt handler to the timer
  • Develop an interrupt handler function
  • Use SDK Debugger to set break points and view the content of variables and memory
  • Procedure

  You will extend the hardware design created in lab 5 to include an XPS interrupt controller and XPS Timer (see Figure 5-1). You will develop an interrupt handler to count the interrupts generated from the timer. The steps for completing the lab are listed below:

  1. Add a timer and interrupt controller

  2. Create a SDK software project

  3. Write an Interrupt Handler

  4. Add a Linker script

  5. Verify operation in hardware SDK Lab: www.xilinx.com/university 5-3

  LEDs PSB DIP LCD

  DDR

Figure 5-1. Design Updated from Previous Lab

  For each procedure within a primary step, there are general instructions (indicated by the symbol). These general instructions only provide a broad outline for performing the procedure. Below these general instructions, you will find accompanying step-by-step directions and illustrated figures that provide more detail for performing the procedure. If you feel confident about completing a procedure, you can skip the step-by-step directions and move on to the next general instruction.

  SDK Lab: www.xilinx.com/university 5-4

  

Add a Timer and Interrupt Controller Step 1

Create a lab5 folder and copy the contents of the lab4 folder into the lab5 folder, or copy the content of the labsolution\lab4 folder into the lab5 folder. Launch Xilinx Platform Studio (XPS) and open the project file.

  Create a lab5 folder in the C:\xup\embedded\labs directory and copy the contents from lab4 to lab5, or copy the content of the labsolution\lab4 folder into the lab5 folder → → → → → → → → → → → →

  Open XPS by selecting Start All Programs Xilinx ISE Design Suite 12 EDK Xilinx

Platform Studio

  Browse to the lab5 directory and open the project system.xmp

  Add the XPS timer and XPS Interrupt Controller peripherals to the design from the IP Catalog, and connect them to the system according to the following table. xps_intc_0 instance

  Intr timer1 Irq Microblaze_0_INTERRUPT delay instance

  CaptureTrig0 net_gnd Interrupt timer1 microblaze_0 instance

  INTERRUPT Microblaze_0_INTERRUPT

  Add the XPS Timer/Counter peripheral from the DMA and Timer section of the IP Catalog, check Only One Timer is present option, and change its instance name to delay

  Add the XPS Interrupt Controller peripheral from the Clock, Reset, and Interrupt section of the IP Catalog with default settings Connect the timer and interrupt controller as a ‘s’ (slave) device to the PLB bus (see Figure

  5-2)

Figure 5-2. Add and Connect the Interrupt Controller and Timer Peripherals

  Select Address tab and click Generate Addresses The generated addresses should look similar to that indicated in the figure below

  SDK Lab: www.xilinx.com/university 5-5

Figure 5-3. Generate Addresses for Interrupt Controller and Timer peripherals

  • Connect interrupt output port Irq of the xps_intc_0 instance to the MicroBlaze interrupt input port using the microblaze_0_INTERRUPT net
  • Click in intr field of xps_intc_0 field to open the Interrupt Connection Dialog. Click on timer1 on left side, and click on sign to add to the Connected Interrupts field (right), and then click OK

  SDK Lab: www.xilinx.com/university 5-6

  In the Ports section, type in timer1 as the Interrupt port connection of the delay instance, and hit enter Make a new net connection (see Figure 5-4) for the INTERRUPT (external interrupt request) port on the microblaze_0 instance by selecting New Connection from the drop-down box. This will create a net called microblaze_0_INTERRUPT

Figure 5-4. Make a new net connection to connect the MicroBlaze Interrupt port

Connect the interrupt controller and timer as follows (refer to Figure 5-5)

Figure 5-5. Connecting the Timer and Interrupt Controller

  Connect CaptureTrig0 port of delay instance to net_gnd to avoid erroneous interrupt

  • request generated due to noice on the unconnected input port

  

Figure 5-6. Connections Snapshot between Timer and Interrupt Controller

  → → → Select Hardware Generate Bitstream

Create an SDK Software Project Step 2

  

Launch SDK and create a new software application project for the lab5 XPS

project. Import the lab5.c source file.

  Open SDK by selecting Project Export Hardware Design to SDK … Check Include Bitstream and BMM File option and click on Export & Launch SDK button.

  This will implement the design if necessary and generate system.bit and system_bd.bmm SDK Lab: www.xilinx.com/university 5-7

Figure 5-7. Export to SDK and Launch SDK

  Right-click on standalone_bsp_0 in the Project Explorer window and select New C Project Enter lab5 in the Project Name field and choose Empty Project in Project type window

  Click Finish Select lab5 in the project view, right-click, and select Import Extend the General folder and Double-click on File System and browse to

  c:\xup\embedded\sources. Select lab5.c and click Finish

  SDK Lab: www.xilinx.com/university 5-8

Figure 5-8. Importing Source Code

  Right click on lab5 and select Changed Referenced BSP. Select standalone_bsp_0 and click OK. Note that both the Problems and Console tabs on the bottom report several compilation errors Note also that the project outline on the right side is updated to reflect the libraries and routines used in the source file

  Correct the errors.

  In the Problems tab, double-click on the first red x for the parse error. This will open the source file bring you around to the error place.

  SDK Lab: www.xilinx.com/university 5-9

Figure 5-9. First Error

  Add the missing global variable declaration as unsigned int, initialize it to the value of 1, and save the file. The first error message should disappear.

  Click the next error message to highlight the problem in the source code

Figure 5-10. Second Error

  Add the missing global variable declaration as int, inititalize it to the value of 0, and save the file. The additional error messages should disappear.

  SDK Lab: www.xilinx.com/university 5-10

  Write an Interrupt Handler

Step 3

  Create the interrupt handler for the XPS timer

  Go to where the interrupt handler function has already been stubbed out in the source file (a fast way to do this is to click on the function in the outline view).

  Create new local variable for the timer_int_handler function:

  unsigned int csr; The first step in creating an XPS timer interrupt handler is to verify that the XPS timer caused the interrupt. This can be determined by looking at the XPS Timer

Control Status Register. Open the API documentation to determine how the

Control Status Register works.

  In the XPS System Assembly View window, right-click the delay instance and select View PDF

  Datasheet to open the data sheet

  Go to the Register Description section in the data sheet and study the TCSR0 Register. Notice that bit 23 has the following description:

Timer0 Interrupt

  Indicates that the condition for an interrupt on this timer has occurred. If the timer mode is capture and the timer is enabled, this bit indicates a capture has occurred. If the mode is generate, this bit indicates the counter has rolled over. Must be cleared by writing a 1

  Read:

  0 - No interrupt has occurred 1 - Interrupt has occurred

Write:

  0 No change in state of T0INT

  1 Clear T0INT (clear to ’0’) The level 0 driver for the XPS timer provides two functions that read and write to the Control Status Register. View the timer API doc by right-clicking on the delay instance in the System Assembly View and selecting Driver:tmrctr_v2_00_a View API Documentation. In the API document, click on the File List link at the top of the document, then click on the link labeled xtmrctr_l.h in the file list. This brings up the document on identifiers and the low- level driver functions declared in this header file. Scroll down in the document and click on the link for the XTmrCtr_GetControlStatusReg( ) function to read more about this function. Use this function to determine whether an interrupt has occurred. The following is the pertinent information found in the XPS timer documentation:

XTmrCtr_GetControlStatusReg ( BaseAddress, TmrCtrNumber )

  Get the Control Status Register of a timer counter

  Parameters:

  SDK Lab: www.xilinx.com/university 5-11

  SDK Lab: www.xilinx.com/university 5-12 o BaseAddress is the base address of the device. o

  TmrCtrNumber is the specific timer counter within the device, a zero-based number, 0 -> (XTC_DEVICE_TIMER_COUNT - 1)

  Returns:

  o The value read from the register, a 32-bit value

  Add the XTmrCtr_GetControlStatusReg function call to the code with the associated parameters. The resulting 32-bit return value should be stored in the variable csr. csr = XTmrCtr_GetControlStatusReg(baseaddr, 0); Note: Substitute baseaddr with the base address for the delay peripheral. Refer to xparameters.h

Complete the Interrupt handler (see Figure 5-15) according to the steps below

  1. Test to see if bit 23 is set by ANDing csr with the XTC_CSR_INT_OCCURED_MASK parameter.

  2. Increment a counter if an interrupt was taken.

  3. Display the count value by using the LEDs_8Bit peripheral and print the value using xil_printf (same functionality as printf with the exception of floating-point handling) Hint: You may use the XGpio_DiscreteWrite () function

  4. Clear the interrupt by using the following function call:

  XTmrCtr_SetControlStatusReg(baseaddr, 0, csr);

  The completed handler should look like as shown in the next figure

Figure 5-11. Completed Interrupt Handler Code Save the file, this should compile the source successully. Add Linker Script

Step 4

  SDK Lab: www.xilinx.com/university 5-13

  Generate the linker script by assigning code section to ilmb and data section to xps_bram. Set heap and stack to 0x400 each.

  Right-click lab5 in project view and select Generate Linker Script Set the heap and stack size to 1024 each

  Assign Code section to ilmb_cntlr_dlmb_cntlr and Data, Stack and Heap sections to

  xps_bram_if_cntlr (this is necessary as each of the memory is too small to hold everything)

Figure 5-12. Generate Linker Script Click Generate to generate the linker script, add to the project and recompile the program

  Look in the console to answer the following question.

  .text segment: .data segment: .bss segment: Total in decimal: Total in hexadecimal:

  Verify Operation in Hardware Step 5 Generate the bitstream and download to the Spartan-3E starter kit.

  Connect and power the board Select Xilinx Tools Program FPGA Browse and select system.bit and system_bd.bmm files from the lab5\implementation (this step is required for 12.2 version. For other version, you may skip this step and try with the default paths to see if it works)

  SDK Lab: www.xilinx.com/university 5-14

Figure 5-13. Setting Up Run Configuration

  Click Program This will execute Data2Mem program to combine the bootloop executable with hardware bitstream, generate the download.bit file, and configure the FPGA.

  Select Terminal tab (near console area), and click on New Terminal Connection ( )

  Select correct COM port and 115200 baudrate, and click OK

  Launch Debugger and debug

  → → →

  From the SDK Menu, select Run Run configurations…

This will present a screen summarizing the existing Launch Configurations

  Under Configurations, select Xilinx C/C++ ELF Click on New to add a new Launch configuration.

  SDK Lab: www.xilinx.com/university 5-15

Figure 5-14. Setting Up Run Configuration

  Click on the Run button. The application will run. You should see messages in the Console and the LEDs should be flickering

Figure 5-15. Resuming an Application

  to invoke the debug session Click Debug Click YES to stop the current execution. Click YES to launch the Debug perspective Right-click in the Variables tab and select Add Global Variables … All global variables will be displayed. Select count variable and click OK

  SDK Lab: www.xilinx.com/university 5-16

  Monitor variables and memory content.

  Double-click to set a breakpoint on the line in lab5.c where count is written to LED

  Figure 5-16. Setting Breakpoint Click on Resume button to continue executing the program up until the breakpoint.

  As you do step over, you will notice that the count variable value is changing. Click on the memory tab. If you do not see it, go to Window Show View Memory Click the sign to add a Memory Monitor

Figure 5-17. Adding Memory Address

  Enter the address for the count variable as follows, and click OK SDK Lab: www.xilinx.com/university 5-17

  Figure 5-18. Monitoring a Variable Click the Resume button to continue execution of the program.

  Notice that the count variables increment every time you click resume.

  Watch count value increment Figure 5-19. Viewing Memory Content of the count variable Terminate the session by clicking on the Terminate button.

  Click to terminate session

Figure 5-20. Terminating a Debug Session

  Close the SDK application and close the XPS project SDK Lab: www.xilinx.com/university 5-18

Conclusion

  SDK Lab: www.xilinx.com/university 5-19

  This lab led you through adding an XPS timer and interrupt controller, and assigning an interrupt handler function to the interrupting device via the software platform settings. You developed an interrupt handler function and tested it in hardware. Additionally, you used the SDK debugger to view the content of variables and memory.

Answers

  .text segment: 6954 .data segment: 388 .bss segment: 2122 Total in decimal: 9454 Total in hexadecimal: 24ee

Completed MHS File

  # ####################################################################### ####### # Created by Base System Builder Wizard for Xilinx EDK 12.2 Build EDK_MS2.63c # Tue Jul 20 10:08:16 2010 # Target Board: Xilinx Spartan-3E Starter Board Rev D # Family: spartan3e # Device: XC3S500e # Package: FG320 # Speed Grade: -4 # Processor number: 1 # Processor 1: microblaze_0 # System clock frequency: 50.0 # Debug Interface: On-Chip HW Debug Module # ####################################################################### ####### PARAMETER VERSION = 2.1.0 PORT fpga_0_RS232_DCE_RX_pin = fpga_0_RS232_DCE_RX_pin, DIR = I PORT fpga_0_RS232_DCE_TX_pin = fpga_0_RS232_DCE_TX_pin, DIR = O PORT fpga_0_LEDs_8Bit_GPIO_IO_O_pin = fpga_0_LEDs_8Bit_GPIO_IO_O_pin, DIR = O, VEC = [0:7] PORT fpga_0_DDR_SDRAM_DDR_Clk_pin = fpga_0_DDR_SDRAM_DDR_Clk_pin, DIR = O PORT fpga_0_DDR_SDRAM_DDR_Clk_n_pin = fpga_0_DDR_SDRAM_DDR_Clk_n_pin, DIR = O PORT fpga_0_DDR_SDRAM_DDR_CE_pin = fpga_0_DDR_SDRAM_DDR_CE_pin, DIR = O PORT fpga_0_DDR_SDRAM_DDR_CS_n_pin = fpga_0_DDR_SDRAM_DDR_CS_n_pin, DIR = O PORT fpga_0_DDR_SDRAM_DDR_RAS_n_pin = fpga_0_DDR_SDRAM_DDR_RAS_n_pin, DIR = O PORT fpga_0_DDR_SDRAM_DDR_CAS_n_pin = fpga_0_DDR_SDRAM_DDR_CAS_n_pin, DIR = O PORT fpga_0_DDR_SDRAM_DDR_WE_n_pin = fpga_0_DDR_SDRAM_DDR_WE_n_pin, DIR = O PORT fpga_0_DDR_SDRAM_DDR_BankAddr_pin = fpga_0_DDR_SDRAM_DDR_BankAddr_pin, DIR = O, VEC = [1:0] PORT fpga_0_DDR_SDRAM_DDR_Addr_pin = fpga_0_DDR_SDRAM_DDR_Addr_pin, DIR = O, VEC = [12:0] PORT fpga_0_DDR_SDRAM_DDR_DQ_pin = fpga_0_DDR_SDRAM_DDR_DQ_pin, DIR =

  IO, VEC = [15:0] PORT fpga_0_DDR_SDRAM_DDR_DM_pin = fpga_0_DDR_SDRAM_DDR_DM_pin, DIR = O, VEC = [1:0] PORT fpga_0_DDR_SDRAM_DDR_DQS_pin = fpga_0_DDR_SDRAM_DDR_DQS_pin, DIR = IO, VEC = [1:0] PORT fpga_0_DDR_SDRAM_ddr_dqs_div_io_pin = fpga_0_DDR_SDRAM_ddr_dqs_div_io_pin, DIR = IO PORT fpga_0_clk_1_sys_clk_pin = dcm_clk_s, DIR = I, SIGIS = CLK, CLK_FREQ = 50000000

  SDK Lab: www.xilinx.com/university 5-20

  PORT fpga_0_rst_1_sys_rst_pin = sys_rst_s, DIR = I, SIGIS = RST, RST_POLARITY = 1 PORT push_GPIO_IO_I_pin = push_GPIO_IO_I, DIR = I, VEC = [0:3] PORT dip_GPIO_IO_I_pin = dip_GPIO_IO_I, DIR = I, VEC = [0:3] PORT lcd_ip_0_lcd_pin = lcd_ip_0_lcd, DIR = O, VEC = [0:6] BEGIN microblaze PARAMETER INSTANCE = microblaze_0 PARAMETER C_AREA_OPTIMIZED = 1 PARAMETER C_DEBUG_ENABLED = 1 PARAMETER HW_VER = 7.30.b BUS_INTERFACE DLMB = dlmb BUS_INTERFACE ILMB = ilmb BUS_INTERFACE DPLB = mb_plb BUS_INTERFACE IPLB = mb_plb BUS_INTERFACE DEBUG = microblaze_0_mdm_bus PORT MB_RESET = mb_reset PORT INTERRUPT = microblaze_0_INTERRUPT END BEGIN plb_v46 PARAMETER INSTANCE = mb_plb PARAMETER HW_VER = 1.04.a PORT PLB_Clk = clk_50_0000MHz PORT SYS_Rst = sys_bus_reset END BEGIN lmb_v10 PARAMETER INSTANCE = ilmb PARAMETER HW_VER = 1.00.a PORT LMB_Clk = clk_50_0000MHz PORT SYS_Rst = sys_bus_reset END BEGIN lmb_v10 PARAMETER INSTANCE = dlmb PARAMETER HW_VER = 1.00.a PORT LMB_Clk = clk_50_0000MHz PORT SYS_Rst = sys_bus_reset END BEGIN lmb_bram_if_cntlr PARAMETER INSTANCE = dlmb_cntlr PARAMETER HW_VER = 2.10.b PARAMETER C_BASEADDR = 0x00000000 PARAMETER C_HIGHADDR = 0x00001fff BUS_INTERFACE SLMB = dlmb BUS_INTERFACE BRAM_PORT = dlmb_port END BEGIN lmb_bram_if_cntlr PARAMETER INSTANCE = ilmb_cntlr PARAMETER HW_VER = 2.10.b PARAMETER C_BASEADDR = 0x00000000 PARAMETER C_HIGHADDR = 0x00001fff BUS_INTERFACE SLMB = ilmb

  SDK Lab: www.xilinx.com/university 5-21

  BUS_INTERFACE BRAM_PORT = ilmb_port END BEGIN bram_block PARAMETER INSTANCE = lmb_bram PARAMETER HW_VER = 1.00.a BUS_INTERFACE PORTA = ilmb_port BUS_INTERFACE PORTB = dlmb_port END BEGIN xps_uartlite PARAMETER INSTANCE = RS232_DCE PARAMETER C_BAUDRATE = 115200 PARAMETER C_DATA_BITS = 8 PARAMETER C_USE_PARITY = 0 PARAMETER C_ODD_PARITY = 0 PARAMETER HW_VER = 1.01.a PARAMETER C_BASEADDR = 0x84000000 PARAMETER C_HIGHADDR = 0x8400ffff BUS_INTERFACE SPLB = mb_plb PORT RX = fpga_0_RS232_DCE_RX_pin PORT TX = fpga_0_RS232_DCE_TX_pin END BEGIN xps_gpio PARAMETER INSTANCE = LEDs_8Bit PARAMETER C_ALL_INPUTS = 0 PARAMETER C_GPIO_WIDTH = 8 PARAMETER C_INTERRUPT_PRESENT = 0 PARAMETER C_IS_DUAL = 0 PARAMETER HW_VER = 2.00.a PARAMETER C_BASEADDR = 0x81440000 PARAMETER C_HIGHADDR = 0x8144ffff BUS_INTERFACE SPLB = mb_plb PORT GPIO_IO_O = fpga_0_LEDs_8Bit_GPIO_IO_O_pin END BEGIN mpmc PARAMETER INSTANCE = DDR_SDRAM PARAMETER C_NUM_PORTS = 1 PARAMETER C_SPECIAL_BOARD = S3E_STKIT PARAMETER C_MEM_TYPE = DDR PARAMETER C_MEM_PARTNO = MT46V32M16-6 PARAMETER C_MEM_DATA_WIDTH = 16 PARAMETER C_PIM0_BASETYPE = 2 PARAMETER HW_VER = 6.01.a PARAMETER C_MPMC_BASEADDR = 0x8c000000 PARAMETER C_MPMC_HIGHADDR = 0x8fffffff BUS_INTERFACE SPLB0 = mb_plb PORT MPMC_Clk0 = clk_100_0000MHzDCM0 PORT MPMC_Clk90 = clk_100_0000MHz90DCM0 PORT MPMC_Rst = sys_periph_reset PORT DDR_Clk = fpga_0_DDR_SDRAM_DDR_Clk_pin PORT DDR_Clk_n = fpga_0_DDR_SDRAM_DDR_Clk_n_pin PORT DDR_CE = fpga_0_DDR_SDRAM_DDR_CE_pin PORT DDR_CS_n = fpga_0_DDR_SDRAM_DDR_CS_n_pin PORT DDR_RAS_n = fpga_0_DDR_SDRAM_DDR_RAS_n_pin

  SDK Lab: www.xilinx.com/university 5-22

  PORT DDR_CAS_n = fpga_0_DDR_SDRAM_DDR_CAS_n_pin PORT DDR_WE_n = fpga_0_DDR_SDRAM_DDR_WE_n_pin PORT DDR_BankAddr = fpga_0_DDR_SDRAM_DDR_BankAddr_pin PORT DDR_Addr = fpga_0_DDR_SDRAM_DDR_Addr_pin PORT DDR_DQ = fpga_0_DDR_SDRAM_DDR_DQ_pin PORT DDR_DM = fpga_0_DDR_SDRAM_DDR_DM_pin PORT DDR_DQS = fpga_0_DDR_SDRAM_DDR_DQS_pin PORT DDR_DQS_Div_O = fpga_0_DDR_SDRAM_ddr_dqs_div_io_pin PORT DDR_DQS_Div_I = fpga_0_DDR_SDRAM_ddr_dqs_div_io_pin END BEGIN clock_generator PARAMETER INSTANCE = clock_generator_0 PARAMETER C_CLKIN_FREQ = 50000000 PARAMETER C_CLKOUT0_FREQ = 100000000 PARAMETER C_CLKOUT0_PHASE = 90 PARAMETER C_CLKOUT0_GROUP = DCM0 PARAMETER C_CLKOUT0_BUF = TRUE PARAMETER C_CLKOUT1_FREQ = 100000000 PARAMETER C_CLKOUT1_PHASE = 0 PARAMETER C_CLKOUT1_GROUP = DCM0 PARAMETER C_CLKOUT1_BUF = TRUE PARAMETER C_CLKOUT2_FREQ = 50000000 PARAMETER C_CLKOUT2_PHASE = 0 PARAMETER C_CLKOUT2_GROUP = NONE PARAMETER C_CLKOUT2_BUF = TRUE PARAMETER C_EXT_RESET_HIGH = 1 PARAMETER HW_VER = 4.00.a PORT CLKIN = dcm_clk_s PORT CLKOUT0 = clk_100_0000MHz90DCM0 PORT CLKOUT1 = clk_100_0000MHzDCM0 PORT CLKOUT2 = clk_50_0000MHz PORT RST = sys_rst_s PORT LOCKED = Dcm_all_locked END BEGIN mdm PARAMETER INSTANCE = mdm_0 PARAMETER C_MB_DBG_PORTS = 1 PARAMETER C_USE_UART = 1 PARAMETER C_UART_WIDTH = 8 PARAMETER HW_VER = 1.00.g PARAMETER C_BASEADDR = 0x84400000 PARAMETER C_HIGHADDR = 0x8440ffff BUS_INTERFACE SPLB = mb_plb BUS_INTERFACE MBDEBUG_0 = microblaze_0_mdm_bus PORT Debug_SYS_Rst = Debug_SYS_Rst END BEGIN proc_sys_reset PARAMETER INSTANCE = proc_sys_reset_0 PARAMETER C_EXT_RESET_HIGH = 1 PARAMETER HW_VER = 2.00.a PORT Slowest_sync_clk = clk_50_0000MHz PORT Ext_Reset_In = sys_rst_s PORT MB_Debug_Sys_Rst = Debug_SYS_Rst PORT Dcm_locked = Dcm_all_locked

  SDK Lab: www.xilinx.com/university 5-23

  PORT MB_Reset = mb_reset PORT Bus_Struct_Reset = sys_bus_reset PORT Peripheral_Reset = sys_periph_reset END BEGIN xps_gpio PARAMETER INSTANCE = dip PARAMETER HW_VER = 2.00.a PARAMETER C_GPIO_WIDTH = 4 PARAMETER C_ALL_INPUTS = 1 PARAMETER C_BASEADDR = 0x81420000 PARAMETER C_HIGHADDR = 0x8142ffff BUS_INTERFACE SPLB = mb_plb PORT GPIO_IO_I = dip_GPIO_IO_I END BEGIN xps_gpio PARAMETER INSTANCE = push PARAMETER HW_VER = 2.00.a PARAMETER C_GPIO_WIDTH = 4 PARAMETER C_ALL_INPUTS = 1 PARAMETER C_BASEADDR = 0x81400000 PARAMETER C_HIGHADDR = 0x8140ffff BUS_INTERFACE SPLB = mb_plb PORT GPIO_IO_I = push_GPIO_IO_I END BEGIN lcd_ip PARAMETER INSTANCE = lcd_ip_0 PARAMETER HW_VER = 1.00.a PARAMETER C_BASEADDR = 0xcf400000 PARAMETER C_HIGHADDR = 0xcf40ffff BUS_INTERFACE SPLB = mb_plb PORT lcd = lcd_ip_0_lcd END BEGIN bram_block PARAMETER INSTANCE = bram_block_0 PARAMETER HW_VER = 1.00.a BUS_INTERFACE PORTA = xps_bram_if_cntlr_0_PORTA END BEGIN xps_bram_if_cntlr PARAMETER INSTANCE = xps_bram_if_cntlr_0 PARAMETER HW_VER = 1.00.b PARAMETER C_SPLB_NATIVE_DWIDTH = 32 PARAMETER C_BASEADDR = 0x88208000 PARAMETER C_HIGHADDR = 0x88209fff BUS_INTERFACE SPLB = mb_plb BUS_INTERFACE PORTA = xps_bram_if_cntlr_0_PORTA END BEGIN xps_timer PARAMETER INSTANCE = delay PARAMETER HW_VER = 1.02.a PARAMETER C_ONE_TIMER_ONLY = 1 PARAMETER C_BASEADDR = 0x83c00000

  SDK Lab: www.xilinx.com/university 5-24

  PARAMETER C_HIGHADDR = 0x83c0ffff BUS_INTERFACE SPLB = mb_plb PORT CaptureTrig0 = net_gnd PORT Interrupt = timer1 END BEGIN xps_intc PARAMETER INSTANCE = xps_intc_0 PARAMETER HW_VER = 2.01.a PARAMETER C_BASEADDR = 0x81800000 PARAMETER C_HIGHADDR = 0x8180ffff BUS_INTERFACE SPLB = mb_plb PORT Intr = timer1 PORT Irq = microblaze_0_INTERRUPT END

  SDK Lab: www.xilinx.com/university 5-25

Mostrar más